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Abstract: Using near-infrared (NIR) light with 700–1200 nm wavelength, transillumination
images of small animals and thin parts of a human body such as a hand or foot can be obtained.
They are two-dimensional (2D) images of internal absorbing structures in a turbid medium. A
three-dimensional (3D) see-through image is obtainable if one can identify the depth of each part
of the structure in the 2D image. Nevertheless, the obtained transillumination images are blurred
severely because of the strong scattering in the turbid medium. Moreover, ascertaining the
structure depth from a 2D transillumination image is difficult. To overcome these shortcomings,
we have developed a new technique using deep learning principles. A fully convolutional
network (FCN) was trained with 5,000 training pairs of clear and blurred images. Also, a
convolutional neural network (CNN) was trained with 42,000 training pairs of blurred images
and corresponding depths in a turbid medium. Numerous training images were provided by the
convolution with a point spread function derived from diffusion approximation to the radiative
transport equation. The validity of the proposed technique was confirmed through simulation.
Experiments demonstrated its applicability. This technique can provide a new tool for the NIR
imaging of animal bodies and biometric authentication of a human body.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In medical and biometric applications, the three-dimensional (3D) structure of blood vessel
networks provides crucial information for diagnosis, treatment evaluation and personal authenti-
cation. As examples, this information is extremely helpful for evaluating cancer invasion depth,
raising robot surgery precision, and stepping up vein authentication from 2D to 3D. Useful
imaging techniques available in medical fields such as X-ray CT, MRI, and PET can provide
high-quality 3D images, but they require hazardous radiation or large-scale equipment. Recently,
an acousto-optic imaging technique has been used to visualize the 3D blood vessel structure of a
human body [1–6]. This technique is safe and useful, but it requires both light and ultrasound.
This requirement not only makes the system complicated; it also makes contact on the lesion
unavoidable.

Optical transillumination imaging techniques are other candidates to visualize blood vessel
networks. Using these techniques, non-contact measurements can be taken using simple,
compact, and safe equipment. Major veins become visible under visible light illumination if the
subcutaneous vein lies at a few millimeters depth under the skin [7–11]. Nevertheless, the image
is not clear. The deeper blood vessels are not visible. When using near-infrared (NIR) light,
the vein image can be visualized better because less scattering and absorption occurs than with
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visible light. Some instruments are available to provide a vessel network pattern using NIR light
[12–18]. However, the captured vein image before image processing is blurred severely because
of light scattering in the interstitial tissue between the vein and the skin. Diffuse scattering at the
body surface also degrades the vein image in non-contact measurement. These effects degrade
the transillumination image quality and make visualization of the 3D structure difficult.

One can imagine a clear image from a blurred one. Similarly, one can estimate an object’s
depth when immersed in a turbid medium, much as one can infer an approximate depth of a
fish in muddy water from a blurred view. This seems to derive from many earlier experiences.
Therefore, a clear image might be obtained from a blurred one; the depth of an absorber might
be estimated using the well-trained neural network of a computer. Similar ideas for deblurring
and depth estimation [19–21] have been reported. For example, Afifi et al. modified a CNN for
depth estimation in clear air from a single RGB image [19]. Lo et al. proposed a technique that
utilizes monocular color images to estimate the depth information in clear air using a CNN [20].
However, their technique cannot be applied to the blurred image in a turbid medium. Sabir et
al. presented a CNN-based technique to estimate the bulk optical properties (absorption and
scattering coefficients) of a highly scattering medium such as biological tissue in diffuse optical
tomography (DOT) [21]. Similarly, Yoo et al. proposed a technique to use a CNN to obtain the
distribution of optical anomalies for DOT [22]. They used the same DOT system which required
many optical fibers to obtain large number of input and output signals and extensive calculation
to solve inverse problems. Our technique requires only a wide illumination device and a single
camera with relatively simple video-capture software. In addition, few reports have been found
on the combination of deblurring and depth estimation using deep learning, particularly for
transillumination images. With a view toward the better visualization of the blood vessel network,
we propose a new technique to obtain a clear 3D structure from a blurred 2D transillumination
image. The validity of the proposed technique was examined in simulation. Its applicability was
tested through experimentation.

2. Methods

2.1. Training data generation

The proposed technique is based on deblurring and depth estimation using a neural network
trained for blurred images. A neural network (NN) designed for deep learning was used for this
study. To train the NN for deblurring, we feed many pairs of clear and corresponding blurred
images to a computer system. To train the NN for depth estimation, we feed many pairs of the
depth of the absorber in a turbid medium and the blurred image of the absorber.

Generally, better performance of NN can be expected with a greater number of the training
pair before reaching the overfitting limit. In our system, the number of the training pairs was
from several hundreds to a few thousands in a single epoch. It is unrealistic to prepare such
numerous training pairs in a practical measurement. Therefore, we generated blurred images by
the convolution of original images with a point spread function (PSF). The PSF based on the
model presented in Fig. 1 is given as [23]:
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[︄
(µs

′ + µa) +

(︄
κd +

1√︁
ρ2 + d2

)︄
×

d√︁
ρ2 + d2

]︄ exp
(︂
−κd

√︁
ρ2 + d2

)︂
√︁
ρ2 + d2

, (1)

where κd = [3µa(µs
′ + µa)]

1/2. C, µs’, µa and d respectively represent the constant with respect
to ρ and d, the reduced scattering coefficient, the absorption coefficient, and the absorber depth.

This PSF was derived originally for the light intensity distribution on the surface of a turbid
medium for a point light source as presented in Fig. 1 [23]. In contrast, the transillumination
image is a blurred shadow of an absorber in a turbid medium. It has been verified that this PSF is
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Fig. 1. Geometry for PSF as light distribution observed at the scattering medium surface.

applicable to the blur in transillumination imaging regarding the image as a collection of point
absorbers [24]. Using this PSF we can obtain the blurred images for specific depth in a turbid
medium. The calculated images were good for training the neural network. In this calculation,
the background of an image is assumed to be homogeneous. In practice, however, the medium is
often inhomogeneous in scattering and absorption coefficients. The image blur is much more
dependent on scattering than absorption. In macroscopic imaging of animals, the target of the
imaging is often the absorption distribution, and the scattering coefficient does not vary much in
the viewing area. Therefore, this PSF can be used to simulate the blur in practical variations.
The applicability of this PSF in practice was reported before [23]. Figure 2 presents examples
of training pairs obtained using PSF convolution with different depths. The original and the
blurred images were used as a training pair for the fully convolutional network (FCN) to deblur
the image. Depth d and the blurred image were used as a training pair for the convolutional
neural network (CNN) to estimate the absorber depth.

Fig. 2. Training pairs generated by PSF convolution.

2.2. Deblurring with FCN

We can expect to obtain a blur-less image as an output of NN for a blurred image input if we
train NN with many pairs of images before and after blurring. We used a NN developed for deep
learning. In deep learning, CNN is commonly used for classification, detection and segmentation
of an image. In our application, the NN output should be a modified image. Therefore, we used
FCN for which the last fully connected layer of NN was replaced by a convolutional layer. For
the FCN, we used an NN based on U-net with skip connections [25,26] to improve the image
processing accuracy. Figure 3 presents the concept of deblurring with FCN.
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Fig. 3. Concept of deblurring with FCN: (a) training process and (b) image deblurring
process.

2.3. Depth estimation with CNN

In transillumination imaging of animal bodies, images of absorbers such as blood vessel networks
are blurred by strong light scattering at the body tissue. The degree of the blur is dependent on
the absorber depth in a turbid medium. As the depth increases, the transillumination image of
the absorber becomes more blurred. Therefore, if we train NN with many pairs of a blurred
image and a corresponding depth, then the NN will output the depth for a new blurred image
input. This is a common task of classification in deep learning. Figure 4 portrays the concept of
depth estimation with CNN.

Fig. 4. Depth estimation with CNN: (a) training process and (b) depth estimation process.
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2.4. Clear 3D image from blurred 2D image

From transillumination imaging of an animal body, one obtains a 2D blurred image of an
absorbing structure in the body. With FCN and CNN, one can deblur the 2D image and obtain the
absorber depth. After dividing the image into small parts and obtaining the depth for each part,
one can reconstruct a three-dimensional clear image of the absorbing structure. The rear absorber
depth cannot be obtained in the part if a part of an absorber overlaps with another absorber in a
single 2D image. In such a case, 2D images should be taken from a few orientations. Then the
processes presented above should be repeated.

3. Feasibility test in simulation

3.1. Deblurring with FCN

As described in Sec. 2.2, we can expect to obtain a deblurred image as an output of FCN. The
feasibility of this technique was examined through simulation. For FCN, we used the U-net with
skip connections [25,26]. The skip connection in the U-net connects the coding network of a
blurred image with the decoding network for a clear image such that the features of the sampling
layer in the coding network can be transmitted directly to the sampling layer in the decoding
network, which makes the location of the pixels in the network more accurate.

To train the FCN, we generated 5,000 pairs of clear and blurred images. The original images
were 10 patterns that were made artificially to simulate images of the subcutaneous blood vessel
network. The different blurred images were generated from original clear images by convolution
with the PSF given in Eq. (1). The optical parameters were those of general human body tissue,
or µs’= 1.0 /mm and µa= 0.01 /mm. These parameters were used in all simulations described
hereinafter. The PSFs with 10 depths were applied to the 10 patterns. The images were rotated
in 50 orientations to produce 5,000 pairs training data. Subsequently, 5,000 training pairs fed
into the FCN for training with the batch size, the filter size, and the epoch of 10, 3 × 3 and 100,
respectively.

With the original clear patterns, they constituted 5,000 training pairs for FCN. To test the
FCN, 400 testing images were generated from four original patterns which differed from the 10
original patterns used for training. The training was done on a workstation (Intel Core i7-7700 K
CPU; 3.00 GHz; 32 GB memory). The FCN was run by Python in a workstation equipped with a
graphic processing unit (GTX 1080Ti; GeForce).

Figure 5 presents examples of a training pair, an input test image, an output image from FCN
and an original image before blurring. Using the trained FCN, we were able to restore the clear
original image from the badly blurred image. Like the brain, the trained FCN were able to
accommodate new blurred patterns well with different absorber depths. To analyze the deblurring
effects, the quality of the output image from FCN was evaluated in correlation analysis. Figure 6
presents correlation between the output image and the original image before blurring. As the
absorber depth increases, the blur becomes severe and the deblurred image quality became worse.
In Fig. 6 the FCN performance was compared with that obtained by training of different types.
The decrease of image quality with the absorber depth was considerable with fewer training
data. With one fifth of the training data, the image quality decreased rapidly with the absorber
depth. For training, more depths seemed to produce better results than more image-orientations.
However, this difference was much smaller than that shown for the number of training pairs.
These results show that we can get a clear image for the absorber as deep as several to 10 mm
in a turbid medium. In this study, we did not add noises for training data. However, using this
trained system, we could get clear noise-free image with little defects even for the input image
with random noise. We also confirmed that we can get perfect image with the system trained with
Gaussian noise. These analyses verified the FCN capability to deblur an image with sufficient
training and with appropriate choice of training data. If we use the images captured in practical
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environment for training, the improvement in performance is expected. But it is often not easy to
capture enough number of training images.

Fig. 5. Typical examples of images for FCN: (a) training pair, (b) input and output of FCN,
and (c) original image before blurring.

Fig. 6. Correlation analysis between original and deblurred images.

3.2. Depth estimation by CNN

As described in Sec. 2.3, we can expect to obtain the absorber depth as an output of CNN. The
feasibility of this technique was examined through simulation. For NN of deep learning, we
used the CNN based on ResNet, as first introduced by He et al. in 2015 and placed in a top-5
accuracy network [27]. ResNet is a classification model that uses a very deep neural network.
We can expect high accuracy in reality with a sufficient number of training data. The accuracy
drops with the decrease of training data. To overcome this training difficulty and to make CNN
applicable for our specific tasks, we use the PSF given in Eq. (1) to generate training data. For
the training and test data, we generated 60,000 blurred images with known absorber depths. We
prepared 10 kinds of original image shapes of absorber pattern rotated in 60 orientations, with
depth of 0.1–10.0 mm (0.1 mm step). Each image was blurred by the convolution using Eq. (1)
with specified depth. Training was made in a default value epoch using stochastic gradient
descent with momentum for better optimization. The number of the data was 60,000. The typical
numbers for the batch size, the learning rate, and the epoch were, respectively, 32, 10−4, and 10.
We tried different numbers and found this condition was appropriate for computational time and
the stability in our system. To reduce the learning rate gradually, we set the learning rate schedule
as “piecewise” and shuffle every epoch that can make ResNet able to learn more representative
features effectively.

These images were split randomly into two subsets: 70% for training and 30% for testing.
The training was made on the same workstation, as described in Sec. 3.1. After training CNN,
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we fed test data that CNN had never been exposed to before. Then, we obtained the estimated
depth as an output of the CNN. Figure 7 portrays examples of input images and output depths of
the trained CNN. Figure 8 presents a comparison between the given and the estimated depths.
Error bars show the mean and standard deviation of the estimated depths for 10 images. They
agreed well within 2% average error up to 10 mm depth. From this result, we can expect the
depth resolution about 1 mm and 2 mm for the 5 mm and 10 mm depth, respectively. The lateral
resolution and the signal to noise ratio of the output image are close to those of the original
image because of the high correlation coefficient between the original and the output images of
FCN. This result suggests the feasibility of the depth estimation of an absorber in the blurred
transillumination image using CNN.

Fig. 7. Examples of input image and estimated depth of CNN: (given depth) → (estimated
depth)

Fig. 8. Correlation analysis between given and estimated depths: Error bars show mean ±

standard deviation of N = 10 estimations.

3.3. Clear 3D image from a blurred 2D image

Figure 9(a) portrays the simulation model of the absorber in a turbid medium. Uniform light
is illuminated from the left of the rectangular turbid medium. A transillumination image of
a slant bar-absorber was observed through the right surface of the medium. The depth of the
bar measured from the right surface varied 8.65–13.0 mm from the top to the bottom. The
blurred image was obtained by application of the PSF of Eq. (1) to each part of the model with
corresponding depth of the absorber. Figures 9(b) and 9(c) present the absorber image in clear
water and a transillumination image of the slant bar, respectively. Figure 9(d) portrays the output
from the trained FCN. Figure 9(e) shows the 3D image reconstructed using Fig. 9(d) and the
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depth distribution obtained from the trained CNN. This result suggests the feasibility of obtaining
a clear 3D structure from the blurred 2D transillumination image.

Fig. 9. Imaging of clear 3D structure from blurred 2D transillumination image in simulation:
(a) structure of simulation model, (b) original image obtained with transparent medium, (c)
blurred 2D transillumination image, (d) output image from trained FCN, and (e) 3D image
reconstructed with depths from trained CNN.

4. Verification by experimentation

4.1. Transillumination imaging system

Applicability of the proposed technique was examined in experiments. Figure 10 shows the
outline of the transillumination imaging system. The light source was an array of 50 LEDs
(810 nm wavelength, 50× 1 mW optical power, OSLUX IR, PowerStar; EMSc UK Ltd.). A black
painted Y-shape absorber (3.0 mm diameter, 75 mm height) was fixed in the rectangular acrylic
container (40× 100× 60 mm3, internal size) filled with a turbid medium with tissue-equivalent
optical parameters. Intralipos suspension (Otsuka Pharmaceutical Co. Ltd.) was mixed with pure
water to produce the turbid medium (µs’= 1.0 /mm, µa = 0.00536 /mm) [28–31]. The one side of
the container was illuminated with the light source. A transillumination image was recorded with
a cooled CCD camera (ORCA-R2 C10600; Hamamatsu Photonics KK) from another side of the
container. The absorber depth was varied from 1.00 to 10.0 mm from the observation surface of
the container using a mechanical translation system.

4.2. Suppression of background inhomogeneity

Training data for FCN and CNN were generated on the assumption that the light illumination was
uniform over a sufficient area around the absorbing object. In practical transillumination imaging,
this assumption can be hardly satisfied because of the finite size of the light source. Figure 11(a)
shows a typical transillumination image obtained in the experiment with a bar-absorber in a
turbid medium. The effect of the non-uniform illumination appears in the background of the
absorber image. We can eliminate the effect of the non-uniform illumination by dividing the
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Fig. 10. Outline of transillumination system.

transillumination image with the background distribution if we have the background intensity
distribution without the absorber.

Fig. 11. Background elimination in transillumination image: (a) transillumination image
through turbid medium, (b) measured background (BG) without absorber in medium, (c)
calculated background (BG) with Eq. (2), (d) result of image division (a)/(b), and (e) result
of image division (a)/(c).

In the experiment with a model phantom, it is not difficult to obtain the background image
without the target absorber. However, in practical applications such as transillumination imaging
of animal bodies, we cannot take a target absorber out of the body. Therefore, in such a case, we
calculate the background image as a convolution of the light distribution at the illumination side
of the turbid medium and the point spread function Eq. (1) with the depth of total thickness of
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the medium as
Ib(x, y) = Is(x, y) ∗ PSF(x, y; d = t) , (2)

where Ib, Is, d, and t respectively denote the background light distribution, source light distribution
at the illuminated surface of a turbid medium, depth of absorber in the turbid medium, and the
turbid medium thickness. Because Is(x,y) and t are measurable at outside the body, the background
light distribution Ib(x,y) can be obtained irrespective of the target absorber at unknown depth in
the body.

The validity of this technique was tested using measured transillumination images. Figure 11
presents results of the background elimination. Figures 11(a)–11(e) respectively depict an
observed transillumination image of a bar-shape absorber in a turbid medium, a measured
background by extracting the absorber from the medium, a calculated background with Eq. (2),
the result of image division (a)/(b), and the result of image division (a)/(c). Figure 12 presents a
comparison of the intensity profiles along the central horizontal lines in Figs. 11(b) and 11(c), and
Figs. 11(d) and 11(e). They agreed well. These results suggest that we can eliminate the effect
of the inhomogeneous illumination by calculating the background image using the light source
distribution and the outer thickness of the turbid medium. The calculation requires the reduced
scattering coefficient and the absorption coefficient of the medium. These values are available
from the literature or from separate measurement. The former value does not change much in
normal physiological variation. The dependence of PSF on the latter value is much smaller than
the former value. For the following experiments, this background elimination technique was
applied to the measured transillumination images.

Fig. 12. Background elimination with measured and calculated background images: (a)
intensity profiles along central horizontal lines in Figs. 11(b) and 11(c), and (b) intensity
profiles in Figs. 11(d) and 11(e).

4.3. Deblurring by FCN

The applicability of the proposed technique to obtain a clear transillumination image from a
blurred image using FCN was tested in experiments. In the container presented in Fig. 12, we
placed an absorber made of 3-mm-diameter black plastic wire. For reference, after the container
was filled with clear water, a transillumination image was taken. Then the water was replaced by
the tissue-simulating turbid medium (µs’= 1.0 /mm, µa = 0.00536 /mm). A transillumination
image was taken. After the background elimination, the blurred image was fed to the FCN, which
had been trained with the simulated images in the simulation described in Sec. 3.1. For additional
analysis, output from the FCN was compared with the reference image taken through clear water.

Figure 13 presents examples of these images. The effectiveness of this technique was evaluated
using correlation analysis. Figure 14 presents correlation between the output image from FCN
and the corresponding image through clear water for 30 absorbers. As the absorber depth
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increased, the transillumination image was more blurred. The image recovery became more
difficult. However, with our technique using skip-connection of FCN, even at 10.0 mm depth, a
correlation coefficient of more than 0.94 was attained. This result verified the applicability of
FCN to deblur transillumination images as deep as 10.0 mm. For comparison, correlation of the
output images from the FCN without skip connection was analyzed. The correlation coefficient
decreased and its variation increased with the depth. The fluctuation in the variation at the depth
more than 5 mm was irregular. The difference in the correlation coefficients with and without the
skip connection was apparent. This result demonstrates the degree of the effectiveness of the
skip connection.

Fig. 13. Result of scattering suppression by FCN at depth d = 6.00 mm: (a) image taken
through clear water; (b) transillumination image through turbid medium; (c) transillumination
image after background elimination; and (d) output image from trained FCN.

Fig. 14. Correlation of deblurred images from FCN to original blurless images, N= 30.

4.4. Depth estimation by CNN

The applicability of the proposed technique to obtain the absorber depth from a 2D transillumina-
tion image using CNN was tested in experiments. Figure 15 shows the structure of the absorber
with varying depth and its transillumination image. The background inhomogeneity was removed
using Eq. (2). The blurred image was fed to the CNN trained with simulated images in the
simulation described in Sec. 3.2. Figure 16 presents the result of depth estimation. As the depth
increased, the estimation error increased. However, the average error was within 3.5%. High
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correlation between the given and estimated depths was confirmed. This result demonstrated the
applicability of CNN to estimate the absorber depth as being at least as deep as 10 mm.

Fig. 15. Absorber used for depth estimation: (a) structure in turbid medium, (b) transillu-
mination image, and (c) image after background elimination.

Fig. 16. Correlation between estimated depth by CNN and given depth during experimenta-
tion.

4.5. Clear 3D imaging from blurred 2D image

The applicability of the proposed technique to obtain clear 3D structure in a turbid medium from
a blurred 2D transillumination image was tested through experimentation. Figure 17 presents the
absorber structure in clear water, in turbid medium and the transillumination image. respectively.
The absorber depth varied from one place to another. Figure 18 shows the 3D transillumination
image obtained using the clear image from FCN and the depth distribution from CNN. This result
verified the applicability of the proposed technique to obtain a clear 3D image from a single
blurred 2D transillumination image.
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Fig. 17. Absorber used for 3D imaging: (a) structure in turbid medium and (b) transillumi-
nation image.

Fig. 18. 3D images obtained from clear image from FCN and depth distribution from CNN:
(a) ground true image in clear water, (b) 3D images viewed from different angles.
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5. Conclusions

To expand the usefulness of transillumination imaging through turbid medium with NIR light, a
technique was developed to obtain a clear 3D image from a blurred 2D transillumination image.
The severe blur caused by the turbid medium was clarified using FCN trained with 5,000 training
images in deep learning. The absorber depth in a turbid medium was estimated using CNN in
deep learning with 42,000 training pairs. The difficulty of obtaining numerous training data was
solved using convolution with a point spread function derived from the diffusion approximation
to the equation of transfer. The problem posed by inhomogeneous illumination was resolved
through background elimination using measurable quantities from outside the turbid medium.
The feasibility of the proposed technique was confirmed in simulation. Its validity was verified
through experimentation. The effectiveness of the proposed technique was demonstrated for
the absorbing structure at a depth from several to 10 mm in the tissue-simulated turbid medium
with 40 mm thickness. There have been many attempts to sharpen blurred images, but few have
been able to make transillumination imaging useful in medical practice. The poor flexibility
for different depths of multiple targets in a turbid medium is one of the reasons. The proposed
technique can solve this problem. The tradeoff of this technique compared with others is the
requirements for a large number of training data and large computational power. However, they
can be solved with the use of an appropriate PSF and current progress of computers. In this
study, we examined the feasibility of deep learning to clarify the blurred image and to estimate
the absorber depth with FCN and CNN. It would be useful if we can combine them into a single
network. It is a future task to implement these functions into one.

Results suggest that this technique is useful to observe the subcutaneous structure of the blood
vessel network and identify its depth distribution as deep as several millimeters. This technique
only requires optic, not require complicated contact, ultrasound or others supplements, it can
provide a new tool for the diagnosis of dermatology, various cancers, vascular diseases, and
tissue metabolism. It can also step up the vein authentication from 2D to 3D. The pursuit of
application of the proposed technique to animal tissue should be continued.
Funding. Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (17H02112,
18K18865, 20K20537).

Acknowledgments. The authors are grateful to Mr. Xuan Wang and Mr. Ken Akasaka of the Graduate School of
Information, Production and Systems, Waseda University for their help in developing deep learning systems. This study
was supported by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Disclosures. The authors declare that they have no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

References
1. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
2. E. Maeva, F. Severin, C. Miyasaka, B. R. Tittmann, and R. G. Maev, “Acoustic imaging of thick biological tissue,”

IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 56(7), 1352–1358 (2009).
3. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus. 1(4), 602–631 (2011).
4. R. G. Maev, “Advances in acoustic microscopy and high resolution ultrasonic imaging: From principles to new

applications,” Proc. SPIE 9040, 904007 (2014).
5. A. B. E. Attia, G. Balasundaram, M. Moothanchery, U. S. Dinish, R. Bi, V. Ntziachristos, and M. Olivo, “A review of

clinical photoacoustic imaging: Current and future trends,” Photoacoustics 16, 100144 (2019).
6. M. A. L. Bell, “Photoacoustic imaging for surgical guidance: principles, applications, and outlook,” J. Appl. Phys.

128(6), 060904 (2020).
7. E. C. Lee, H. Jung, and D. Kim, “New finger biometric method using near infrared imaging,” Sensors 11(3),

2319–2333 (2011).
8. N. J. Cuper, J. H. Klaessens, J. E. Jaspers, R. de Roode, H. J. Noordmans, J. C. de Graaff, and R. M. Verdaasdonk,

“The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood
withdrawal in children,” Med. Eng. & Phys. 35(4), 433–440 (2013).

9. A. M. García and P. R. Horche, “Light source optimizing in a biphotonic vein finder device: experimental and
theoretical analysis,” Results Phys. 11, 975–983 (2018).

https://doi.org/10.1063/1.2195024
https://doi.org/10.1109/TUFFC.2009.1191
https://doi.org/10.1098/rsfs.2011.0028
https://doi.org/10.1117/12.2044402
https://doi.org/10.1016/j.pacs.2019.100144
https://doi.org/10.1063/5.0018190
https://doi.org/10.3390/s110302319
https://doi.org/10.1016/j.medengphy.2012.06.007
https://doi.org/10.1016/j.rinp.2018.10.033


Research Article Vol. 12, No. 5 / 1 May 2021 / Biomedical Optics Express 2887

10. C. A. Mela, D. P. Lemmer, F. S. Bao, F. Papay, T. Hicks, and Y. Liu, “Real-time dual-modal vein imaging system,”
Int. J. CARS 14(2), 203–213 (2019).

11. K. Efendiev, P. Grachev, A. Moskalev, and V. Loschenov, “Non-invasive high-contrast infrared imaging of blood
vessels in biological tissues by the backscattered laser radiation method,” Infrared Phys. Technol. 111, 103562 (2020).

12. M. Kono, H. Ueki, and S. Umemura, “Near-infrared finger vein patterns for personal identification,” Appl. Opt.
41(35), 7429–7436 (2002).

13. F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of
instruments, methods and applications,” J. Photochem. Photobiol., B 98(1), 77–94 (2010).

14. J. Yang and Y. Shi, “Towards finger-vein image restoration and enhancement for finger-vein recognition,” Inf. Sci.
268, 33–52 (2014).

15. L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second
and third near-infrared spectral windows,” J. Biomed. Opt. 19(5), 056004 (2014).

16. D. Kim, Y. Kim, S. Yoon, and D. Lee, “Preliminary study for designing a novel vein-visualizing device,” Sensors
17(2), 304 (2017).

17. S. Merlo, V. Bello, E. Bodo, and S. Pizzurro, “A VCSEL-Based NIR transillumination system for morpho-functional
imaging,” Sensors 19(4), 851 (2019).

18. C. T. Pan, M. D. Francisco, C. K. Yen, S. Y. Wang, and Y. L. Shiue, “Vein pattern locating technology for cannulation:
a review of the low-cost vein finder prototypes utilizing near infrared (nir) light to improve peripheral subcutaneous
vein selection for phlebotomy,” Sensors 19(16), 3573 (2019).

19. A. J. Afifi and O. Hellwich, “Object depth estimation from a single image using fully convolutional neural network,”
2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), 1–7 (2016).

20. F. P. W. Lo, Y. Sun, and B. Lo, “Depth estimation based on a single close-up image with volumetric annotations in
the wild: a pilot study,” 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),
513–518 (2019).

21. S. Sabir, S. Cho, Y. Kim, R. Pua, D. Heo, K. H. Kim, Y. Choi, and S. Cho, “Convolutional neural network-based
approach to estimate bulk optical properties in diffuse optical tomography,” Appl. Opt. 59(5), 1461–1470 (2020).

22. J. Yoo, S. Sabir, D. Heo, K. H. Kim, A. Wahab, Y. Choi, S. Lee, E. Y. Chae, H. H. Kim, Y. M. Bae, Y. W. Choi, S.
Cho, and J. C. Ye, “Deep Learning Diffuse Optical Tomography,” IEEE Trans. Med. Imaging 39(4), 877–887 (2020).

23. K. Shimizu, K. Tochio, and Y. Kato, “Improvement of transcutaneous fluorescent images with a depth-dependent
point-spread function,” Appl. Opt. 44(11), 2154–2161 (2005).

24. T. N. Tran, K. Yamamoto, T. Namita, Y. Kato, and K. Shimizu, “Three-dimensional transillumination image
reconstruction for small animal with new scattering suppression technique,” Biomed. Opt. Express 5(5), 1321–1335
(2014).

25. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 3431–3440 (2015).

26. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,”
Medical Image Computing and Computer-Assisted Intervention – MICCAI, 234–241 (2015).

27. L. He, G. Wang, and Z. Hu, “Learning depth from single images with deep neural network embedding focal length,”
IEEE Trans. on Image Process. 27(9), 4676–4689 (2018).

28. A. Shahin, M. S. El-Daher, and W. Bachir, “Determination of the optical properties of Intralipid 20% over a broadband
spectrum,” Photon.Lett.PL 10(4), 124–126 (2018).

29. E. Ohmae, N. Yoshizawa, K. Yoshimoto, M. Hayashi, H. Wada, T. Mimura, H. Suzuki, S. Homma, N. Suzuki, H.
Ogura, H. Nasu, H. Sakahara, Y. Yamashita, and Y. Ueda, “Stable tissue-simulating phantoms with various water and
lipid contents for diffuse optical spectroscopy,” Biomed. Opt. Express 9(11), 5792–5808 (2018).

30. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a
review,” J. Innovative Opt. Health Sci. 04(01), 9–38 (2011).

31. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).

https://doi.org/10.1007/s11548-018-1865-9
https://doi.org/10.1016/j.infrared.2020.103562
https://doi.org/10.1364/AO.41.007429
https://doi.org/10.1016/j.jphotobiol.2009.11.007
https://doi.org/10.1016/j.ins.2013.10.009
https://doi.org/10.1117/1.JBO.19.5.056004
https://doi.org/10.3390/s17020304
https://doi.org/10.3390/s19040851
https://doi.org/10.3390/s19163573
https://doi.org/10.1364/AO.377810
https://doi.org/10.1109/TMI.2019.2936522
https://doi.org/10.1364/AO.44.002154
https://doi.org/10.1364/BOE.5.001321
https://doi.org/10.1109/TIP.2018.2832296
https://doi.org/10.4302/plp.v10i4.843
https://doi.org/10.1364/BOE.9.005792
https://doi.org/10.1142/S1793545811001319
https://doi.org/10.1088/0031-9155/58/11/R37

